Acide carboxylique

Apparence déplacer vers la barre latérale masquer Modèle éclaté d'un groupe carboxyle.

En chimie organique, le terme acide carboxylique désigne une molécule comprenant un groupe carboxyle (–C(O)OH). Comme le nom l'indique, les acides carboxyliques sont des acides. Leurs bases conjuguées sont appelées ions carboxylate.

Un groupe carboxyle est un groupe fonctionnel composé d'un atome de carbone, lié par une double liaison à un atome d'oxygène et lié par une liaison simple à un groupe hydroxyle : -OH.

Généralités

En chimie, les acides carboxyliques R-COOH constituent avec les acides sulfoniques R-SO3H les deux types d'acides de la chimie organique. On les trouve de manière abondante dans la nature, sous la forme d'acide gras (lipide) et ils sont très importants en chimie industrielle. Par exemple, l'acide acétique est non seulement une brique importante pour les molécules complexes que l'on trouve en biologie, mais est aussi une molécule produite industriellement et qu'on retrouve dans le vinaigre. Un des plus connus est l'acide acétylsalicylique ou aspirine. La brique de base des protéines, les acides aminés sont des acides carboxyliques.

Le groupe fonctionnel caractéristique est le groupe carboxyle, où R désigne un hydrogène ou un groupe organique :

formule développée du groupe fonctionnel carboxyle

Lorsque le R est un groupe alkyle, les acides carboxyliques ont pour formule brute CnH2nO2 où n est entier quelconque. Le calcul du nombre d'insaturation donne : 2 n + 0 − 2 n + 2 2 = 1   {\displaystyle {\frac {2n+0-2n+2}{2}}=1~} . Cette insaturation traduit la liaison double carbone-oxygène.

On écrit souvent les groupes carboxyle sous la forme réduite : -COOH (forme non ionisée du groupe). La forme ionisée du groupe est : -COO−.

Celui-ci est toujours situé en fin de chaîne carbonée. L'ajout d'un groupe carboxyle à un composé organique est une carboxylation, l'élimination de ce même groupe est une décarboxylation.

Ions carboxylate

Ce sont les bases conjuguées R-COO− des acides carboxyliques. Ces bases sont en général plutôt faibles. La charge négative sur la molécule est délocalisée sur les deux atomes d'oxygène du groupe carboxyle par mésomérie, ce qui explique la stabilité relative de ce type de molécules.

formule développée d'un ion carboxylate

L'ion carboxylate est un tensioactif amphiphile, c'est l'espèce détergente du savon. En effet, le groupe carboxylate _COO- est hydrophile car très polaire. En revanche, la chaîne carbonée R est apolaire et donc hydrophobe et lipophile.

Nomenclature

Classe Formule*
du groupe caractéristique
Suffixe
Acides carboxyliques -(C)OOH
-COOH
acide-…oïque
acide …-carboxylique
* L'atome de carbone indiqué entre parenthèses est inclus dans le nom de la structure fondamentale et non dans le suffixe. Exemples :
  1. L'acide heptanoïque CH3(CH2)5-COOH peut alternativement être nommé acide hexane-1-carboxylique si l'atome de carbone du -COOH n'est pas inclus dans la numérotation de la chaîne ;
  2. L'acide heptanedioïque HOOC-(CH2)5-COOH est un acide dicarboxylique. Le suffixe -oïque est précédé du préfixe multiplicatif di- ;
  3. Acide cyclopentanecarboxylique : représentation de l'acide cyclopentanecarboxylique-COOH.
Nom et source de quelques acides carboxyliques
Type Structure Nom IUPAC nom commun Source
Monoacides aliphatiques H-COOH acide méthanoïque acide formique sécrété par certaines fourmis (latin : formica, fourmis)
CH3-COOH acide éthanoïque acide acétique latin : acetum, vinaigre
CH3CH2-COOH acide propanoïque acide propionique grec : pion, gras
CH3(CH2)2-COOH acide butanoïque acide butyrique grec : bouturos, beurre
CH3(CH2)3-COOH acide pentanoïque acide valérique valériane
CH3(CH2)4-COOH acide hexanoïque acide caproïque
CH3(CH2)5-COOH acide heptanoïque acide énanthique
CH3(CH2)6-COOH acide octanoïque acide caprylique noix de coco, lait maternel
CH3(CH2)7-COOH acide nonanoïque acide pélargonique
CH3(CH2)8-COOH acide décanoïque acide caprique
CH3(CH2)9-COOH acide undécanoïque acide undécylique
CH3(CH2)10-COOH acide dodécanoïque acide laurique huile de noix de coco
CH3(CH2)11-COOH acide tridécanoïque acide tridécylique
CH3(CH2)12-COOH acide tétradécanoïque acide myristique noix de muscade
CH3(CH2)13-COOH acide pentadécanoïque acide pentadécylique
CH3(CH2)14-COOH acide hexadécanoïque acide palmitique huile de palme
CH3(CH2)15-COOH acide heptadécanoïque acide margarique
CH3(CH2)16-COOH acide octodécanoïque acide stéarique graisses animales
CH3(CH2)17-COOH acide nonadécanoïque acide nonadécylique
CH3(CH2)18-COOH acide éicosanoïque acide arachidique huile d'arachide, les huiles de poisson et les huiles végétales
CH3(CH2)20-COOH acide docosanoïque acide béhénique
Monoacides aromatiques C6H5-COOH acide benzoïque benzène
HO-C6H4-COOH acide 2-hydroxybenzoïque acide salicylique fruits (sous forme de salicylate de méthyle)
Acides thiols CH3CH(SH)-COOH acide 2-mercaptopropanoïque acide thiolactique

N.B. : un moyen mnémotechnique pour se souvenir des noms des diacides linéaires, dans l'ordre croissant du nombre de carbones, est la phrase suivante : « On Mange Saucisse Grillée A Point » (Oxalique, Malonique, Succinique, Glutarique, Adipique, Pimélique). Les diacides sont utilisés pour la synthèse de polyamides et de polyesters.

D'autres types d'acides carboxyliques peuvent être cités : les acides dicarboxyliques, les acides tricarboxyliques, les acides alpha-hydroxylés, les cétoacides, les acides aminés et les acides gras.

Propriétés physiques et structurelles

État

Les acides carboxyliques sont liquides dans les conditions normales tant que leur chaine carbonée présente moins de huit atomes de carbone. Ils sont solides au-delà.

Les acides de faible masse molaire possèdent une forte odeur ; par exemple l'acide butanoïque est responsable de l'odeur du beurre rance.

Polarité, solubilité

La fonction acide carboxylique est fortement polaire et est à la fois donneur et accepteur de liaisons hydrogène. Ceci permet la création de liaisons hydrogène par exemple avec un solvant polaire comme l'eau, l'alcool, et d'autres acides carboxyliques.

Dimérisation d'un acide carboxyliqueDimérisation d'un acide carboxylique

De par cette propriété, les acides carboxyliques de petite taille (jusqu'à l'acide butanoïque) sont complètement solubles dans l'eau. Les molécules d'acides sont aussi capables de former des dimères stables par pont hydrogène, ce qui permet d'expliquer pourquoi leur point d'ébullition est plus élevé que celui des alcools correspondants.

Acidité

En solution dans l'eau, l'acide se dissocie partiellement en ion carboxylate, selon l'équation-bilan :

RCOOH + H2O ⇌ RCOO− + H3O+.

Ce sont des acides faibles dans l'eau (pKA entre 4 et 5).

Comme les alcools, les acides carboxyliques montrent un caractère acide et basique : la déprotonation en ions carboxylate est facile, mais la protonation est plus difficile. Ils possèdent donc un pKA plus faible que celui des alcools. En fait, l'acidité des acides carboxyliques s'explique par l'effet inductif dans le groupe carboxyle : la liaison C=O est très polarisée (électronégativité de l'oxygène supérieure à celle du carbone) ce qui fait que le carbone est électrophile, et il attire donc les électrons de l'autre oxygène. Or cet autre oxygène est lui-même lié à un hydrogène, et cette liaison est aussi polarisée, donc l'électron de l'hydrogène qui s'est rapproché de l'oxygène est attiré à son tour par le carbone électrophile. Cet hydrogène devient donc très facilement mobile, d'où l'acidité du groupe carboxyle.

La solubilité de l'acide carboxylique croit avec le pH.

Spectroscopie

En infrarouge (IR), l'acide carboxylique présente deux bandes de valence :

Vibration C=O O-H
Nombre d'onde (cm−1) 1 680-1 710 2 500-3 200
Intensité (forte) large, moyenne à forte

Structure

Structure du groupe carboxyle: angles et longueurs des liaisonsStructure du groupe carboxyle: angles et longueurs des liaisons

D'après la théorie VSEPR :

L'acide carboxylique possède plusieurs formes mésomères.

Formules mésomères d'un acide carboxyliqueFormules mésomères d'un acide carboxylique

Réactivité

Comme le montre, entre autres, les différentes formules mésomères de l'acide carboxylique :

Dérivés

Les acides carboxyliques comptent de nombreux dérivés :

Chlorure d'acyleChlorure d'acyle EsterEster AmideAmide NitrileNitrile

En termes de groupe partant (nucléofuge), l'ordre de facilité est :

Cl− (chlorure d'acyle), RCOO− (anhydride), RO− (ester), −NH2 et −NR1R2 (amides).

Réduction

Oxydation

Synthèse

Synthèse par oxydation

des alcools ou des aldéhydes Les acides carboxyliques peuvent être obtenus par oxydation des aldéhydes, donc en fait d'une double oxydation des alcools primaires. 5 R C H 2 O H + 2 K M n O 4 + 3 H 2 S O 4 ⟶ 5 R C H O + K 2 S O 4 + 2 M n S O 4 + 8 H 2 O {\displaystyle {\rm {5RCH_{2}OH+2KMnO_{4}+3H_{2}SO_{4}\longrightarrow 5RCHO+K_{2}SO_{4}+2MnSO_{4}+8H_{2}O}}}
5 R C H O + 2 K M n O 4 + 3 H 2 S O 4 ⟶ 5 R C O O H + K 2 S O 4 + 2 M n S O 4 + 3 H 2 O {\displaystyle {\rm {5RCHO+2KMnO_{4}+3H_{2}SO_{4}\longrightarrow 5RCOOH+K_{2}SO_{4}+2MnSO_{4}+3H_{2}O}}} des alcènes R C H = C H 2 + 2 K M n O 4 + 3 H 2 S O 4 ⟶ R C O O H + C O 2 + K 2 S O 4 + 2 M n S O 4 + 4 H 2 O {\displaystyle {\rm {RCH=CH_{2}+2KMnO_{4}+3H_{2}SO_{4}\longrightarrow RCOOH+CO_{2}+K_{2}SO_{4}+2MnSO_{4}+4H_{2}O}}} exemple : synthèse de l'acide acétique par oxydation du propène C H 3 − C H = C H 2 + 2 K M n O 4 + 3 H 2 S O 4 ⟶ C H 3 − C O O H + C O 2 + K 2 S O 4 + 2 M n S O 4 + 4 H 2 O {\displaystyle {\rm {CH_{3}-CH=CH_{2}+2KMnO_{4}+3H_{2}SO_{4}\longrightarrow CH_{3}-COOH+CO_{2}+K_{2}SO_{4}+2MnSO_{4}+4H_{2}O}}}

Synthèse à partir d'un dérivé d'acide

Il s'agit simplement des hydrolyses des différents dérivés d'acides.

ester R C O − O − R ′ + H 2 O ⟺ R C O O H + R ′ O H {\displaystyle {\rm {RCO-O-R'+H_{2}O\Longleftrightarrow RCOOH+R'OH}}} R C O − O − R ′ + O H − ⟶ R C O O − + R ′ O H {\displaystyle {\rm {RCO-O-R'+OH^{-}\longrightarrow RCOO-+R'OH}}} puis R C O O − + H + ⟺ R C O O H {\displaystyle {\rm {RCOO-+H^{+}\Longleftrightarrow RCOOH}}} nitrile R C N + H + ⟺ R C N H + {\displaystyle {\rm {RCN+H^{+}\Longleftrightarrow RCNH^{+}}}} puis lentement R C N H + + H 2 O ⟺ R C O N H 2 + H + {\displaystyle {\rm {RCNH^{+}+H_{2}O\Longleftrightarrow RCONH_{2}+H^{+}}}} puis l'amide est hydrolysé trop vite pour être isolé. R C O N H 2 + H + ⟺ R C O N H 3 + {\displaystyle {\rm {RCONH_{2}+H^{+}\Longleftrightarrow RCONH_{3}^{+}}}} R C O N H 3 + + H 2 O ⟶ R C O O H + N H 4 + {\displaystyle {\rm {RCONH_{3}^{+}+H_{2}O\longrightarrow RCOOH+NH_{4}^{+}}}}

Synthèse par réaction d'un réactif de Grignard sur le dioxyde de carbone

Articles connexes : réactif de Grignard et dioxyde de carbone. Réaction Synthèse d'un acide carboxylique à partir d'un réactif de Grignard et de dioxyde de carboneSynthèse d'un acide carboxylique à partir d'un réactif de Grignard et de dioxyde de carbone Conditions

La synthèse a lieu à basse température (−40 °C). Le dioxyde de carbone est alors sous forme solide, dite carboglace. Il est mis en excès. Après réaction, on effectue une hydrolyse en milieu acide pour obtenir l'acide carboxylique.

Mécanisme

Première étape : addition du réactif de Grignard sur le CO2

Addition du réactif de Grignard sur le dioxyde de carboneAddition du réactif de Grignard sur le dioxyde de carbone

Deuxième étape : hydrolyse en milieu acide

Hydrolyse acide de la molécule intermédiaireHydrolyse acide de la molécule intermédiaire

Synthèse malonique

Article détaillé : Synthèse malonique.

La synthèse malonique est un ensemble de réactions permettant de synthétiser de nombreux acides carboxyliques primaires ou secondaires à partir du malonate de diéthyle.

Elle est composée :

Première partie des réactions de la synthèse maloniquePremière partie des réactions de la synthèse malonique Deuxième partie des réactions de la synthèse maloniqueDeuxième partie des réactions de la synthèse malonique

Cette synthèse est d'autant plus intéressante qu'a priori, elle permet de synthétiser n'importe quel acide carboxylique, puisque, à part un groupe tertiaire, il semble qu'on puisse mettre ce que l'on veut à la place de R.

Attrait pour les moustiques

Une expérience menée en 2022 démontre qu'Aedes aegypti, et sans doute les moustiques piquant les humains en général, sont spécialement attirés par les individus présentant naturellement un taux élevé d'acide carboxylique dans leur sébum. Malheureusement, l'expérience observe que ce taux ne varie ni en fonction du régime alimentaire ni en fonction des produits d'hygiène utilisés. Certaines personnes sont alors condamnées à être de véritables aimants à moustiques. La sécrétion importante d'acide carboxylique étant spécifique aux humains, il est envisagé que la sélection naturelle ait amené les moustiques à être attiré par ce composant afin d'être certains de l'identité de leurs proies, mais aussi comme indice de la présence d'eau claire et propre à proximité, fournie par les humains et utile pour leur reproduction,.

Notes et références

  1. (en) « carboxylic acids », IUPAC, Compendium of Chemical Terminology , Oxford, Blackwell Scientific Publications, 1997, version corrigée en ligne :  (2019-), 2e éd. (ISBN 0-9678550-9-8)
  2. R. Panico et J.-C. Richer, Nomenclature UICPA des composés organiques, Masson, 1994, p. 70, 118- (ISBN 978-2-225-84479-9). Un tableau des suffixes (et préfixes) utilisés pour désigner quelques groupes caractéristiques importants en nomenclature substitutive est consultable dans une référence IUPAC en ligne (en anglais) : Suffixes and prefixes for some important characteristic groups in substitutive nomenclature.
  3. Robert Panico, Jean-Claude Richer et Jean Rigaudy, Nomenclature et terminologie en chimie organique - Classes fonctionnelles. Stéréochimie, Techniques de l'Ingénieur, 1996, p. 20 (ISBN 2 85 059-001-0).
  4. « Table 28(a) Carboxylic acids and related groups. Unsubstituted parent… », sur acdlabs.com (consulté le 22 avril 2023).
  5. (en) Daniel Leonard, « Some People Really Are Mosquito Magnets, and They’re Stuck That Way », Scientific American,‎ 18 octobre 2022 (lire en ligne)
  6. (en) Maria Elena De Obaldia, Takeshi Morita, Laura C. Dedmon, Emely V. Zeledon, Justin R. Cross et Leslie B. Vosshall, « Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels », Cell,‎ 18 octobre 2022 (lire en ligne)

Voir aussi

Articles connexes

Liens externes