Dans le monde d'aujourd'hui, Azote est un sujet qui a gagné en pertinence dans différents domaines de la société. De la politique, de l'économie, de la science, de la technologie à la culture populaire, Azote a attiré l'attention de millions de personnes à travers le monde. Son impact s'est fait sentir de manière significative dans divers aspects de la vie quotidienne, générant des débats, des discussions et de nouvelles perspectives. Dans cet article, nous explorerons différentes facettes de Azote, en analysant son influence, ses conséquences et ses implications possibles pour le futur.
L'azote est l'élément chimique de numéro atomique 7, de symbole N (du latin nitrogenium). C'est la tête de file du groupe des pnictogènes. Dans la langue courante on appelle « azote » le corps simple N2 (diazote), constituant majoritaire de l'atmosphère terrestre, représentant presque les 4/5e de l'air (78,06 %, en volume).
Dans la croûte terrestre, l'azote est le 34e élément constituant par ordre d'abondance. Les minéraux contenant de l'azote sont essentiellement les nitrates, notamment le nitrate de potassium KNO3 (constituant du salpêtre) ou nitre, qui servait jusqu'à la fin du XIXe siècle à faire des poudres explosives (la poudre noire), et le nitrate de sodium NaNO3 (constituant du salpêtre du Chili).
L'azote a de nombreux usages industriels. Il est notamment massivement employé comme engrais en agriculture (sous forme de composés d'ammonium), au point que c'est aujourd'hui son principal usage dans le monde, un usage néfaste pour l'environnement[réf. nécessaire].
Antoine Lavoisier a choisi le nom azote, composé du préfixe a- privatif et du grec ζωός / zōós, « vivant » et qui signifie donc « privé de vie », du fait que contrairement à l'oxygène il n'entretient pas la vie des animaux.
L'origine du symbole N est son nom latin nitrogenium qui provient du grec nitron gennan, ce qui signifie « formateur de salpêtre » (nitrate de potassium), terme suggéré par le chimiste Jean-Antoine Chaptal. Le terme anglais nitrogen a conservé cette racine pour désigner l'azote, alors que le terme français « nitrogène » n'est plus utilisé de nos jours.
Bien que des composés contenant l'élément chimique azote fussent connus depuis l'Antiquité, (par exemple le salpêtre, c'est-à-dire les nitrates de sodium et de potassium), le diazote ne fut isolé par Daniel Rutherford qu'en 1772, et indépendamment par Carl Wilhelm Scheele et Henry Cavendish.
Le protoxyde d'azote N2O fut préparé par Joseph Priestley en 1772.
L'ammoniac NH3 fut préparé en 1774, également par J. Priestley.
Le premier composé accepteur - donneur faisant intervenir l'azote, H3N.BF3 fut préparé en 1809 par Louis Joseph Gay-Lussac.
Le premier composé présentant une liaison azote-halogène, le trichlorure d'azote NCl3 fut préparé par Pierre Louis Dulong qui perdit un œil et l'extrémité d'un doigt, en étudiant les propriétés de ce corps très instable et violemment explosif.
L'azote possède 16 isotopes connus de nombre de masse variant de 10 à 25, ainsi qu'un isomère nucléaire, 11mN. Deux d'entre eux sont stables et présents dans la nature, l'azote 14 (14N) et l'azote 15 (15N), le premier représentant la quasi-totalité de l'azote présent (99,64 %). On assigne à l'azote une masse atomique standard de 14,0067 u. Tous les radioisotopes de l'azote ont une durée de vie courte, l'azote 13 (13N) ayant la demi-vie la plus longue, 9,965 minutes, tous les autres ayant une demi-vie inférieure à 7,15 secondes, et la plupart d'entre eux inférieure à 625 ms.
L'élément chimique azote est présent dans des entités ne contenant que l'élément chimique N et dans les composés de l'azote, à différents degrés d'oxydation.
Il existe plusieurs entités chimiques ne contenant que l'élément chimique azote, la molécule de diazote, l'atome, et deux ions de l'azote.
Le diazote N2 est la forme la plus courante d'entité ne contenant que l'élément chimique azote. La triple liaison liant les deux atomes est une des liaisons chimiques les plus fortes (avec le monoxyde de carbone CO). De ce fait, le diazote est cinétiquement inerte. C'est le composant le plus abondant de l'atmosphère terrestre. Industriellement, le diazote est obtenu par distillation de l'air ambiant.
Sa réactivité principale est la formation d'ammoniac par le procédé Haber
Il peut être obtenu en laboratoire à partir de diazote sous faible pression (0,1 - 2 mmHg) en présence d'une décharge électrique. À sa formation succède pendant plusieurs minutes une pale lueur jaune. Celle-ci résulte de la désexcitation de N2* à la suite de la recombinaison de deux atomes N. Cette forme excitée de diazote peut être mise en évidence en présence de CO2. Il se forme alors CO et de l'oxygène atomique dans un état triplet.
Il existe deux ions stables de l'azote :
L'azote forme des composés avec de nombreux autres éléments chimiques. Il est présent dans des composés organiques et inorganiques. Il forme des espèces réactives qui ont un rôle de signalisation cellulaire, dans l'immunité, mais qui peuvent aussi être délétères.
Le principal composé comportant une des liaisons chimique N-H est l'ammoniac NH3. D'autres composés contiennent également cette liaison :
Les oxydes d'azote connus sont, par nombre d'oxydation (moyen) croissant :
Tous sont thermodynamiquement instables au regard de la décomposition en N2 et O2 à température ambiante.
Les principaux oxoanions de l'azote, stables en milieu aqueux, sont les ions nitrate NO3− et nitrite NO2−. L'ion nitrate est la base conjuguée d'un acide fort, l'acide nitrique. L'ion nitrite est la base conjuguée d'un acide faible, l'acide nitreux. Ce dernier est instable et, dans l'eau, il se "dismute" en monoxyde d'azote (qui se réoxyde en dioxyde d'azote en présence d'air) et en ion nitrate.
Le plus stable des halogènures d'azote, NF3 ne fut préparé qu'en 1928, plus d'un siècle après le très instable trichlorure NCl3. Le tribromure d'azote NBr3, très explosif, ne fut isolé qu'en 1975. Le triiodure NI3 n'a jamais été isolé, mais son adduit I3N.NH3, solide noir hautement instable au choc et à la température, a été préparé en 1812. Des combinaisons comme N2F2 et bien d'autres existent également.
De nombreux azotures métalliques existent. Plusieurs voies de synthèse sont possibles :
La réaction entre le métal et le diazote à chaud
La réaction entre le métal et l'ammoniac à haute température
La décomposition d'amidures
Des réactions de transfert
Aujourd'hui, l'azote gazeux ou diazote est généralement obtenu par liquéfaction de l'air, dont il est le principal constituant avec une concentration de 78,06 % en volume et de 75,5 % en masse. La production mondiale est d'environ 150 millions de tonnes par an.
L'azote liquide est employé comme agent réfrigérant. Le gaz a diverses applications :
Le diazote, contrairement aux gaz inhibiteurs chimiques halogénés et aux CFC ne présente a priori aucun effet nocif pour l'environnement (pas d'impact sur l'effet de serre, ni sur la couche d'ozone). Mais il requiert des réservoirs volumineux, des canalisations adaptées et des mesures constructives pour faire face à la détente brutale d'un équivalent de 40 à 50 % du volume protégé.
L'utilisation de diazote pour créer des atmosphères confinées inertes est à l'origine de plusieurs morts par asphyxie, lorsqu'une personne pénètre sans s'en rendre compte dans une enceinte inertée ; il est nécessaire de vérifier la présence d'une proportion suffisante d'oxygène dans de tels espaces confinés avant d'y pénétrer, ou de s'équiper d'un appareil respiratoire autonome. Ce gaz a été employé lors d'une exécution d'un condamné à mort en 2024 aux États-Unis, soulevant une controverse sur le côté inhumain de la suffocation.
En plongée, l'azote contenu dans l'air respiré sous pression est à l'origine du phénomène de la narcose. Elle est perceptible à partir d'une PpN2 = 3,2 bars (soit 30 mètres pour une plongée à l'air au niveau de la mer) pour les personnes les plus sensibles et plus communément dans la zone des 40 à 60 mètres. Elle devient « toxique » pour l'organisme à partir d'une PpN2 = 5,6 bars (soit 60m pour une plongée à l'air au niveau de la mer). C'est la raison pour laquelle la plongée à l'air est limitée à 60 mètres en France.
L'azote est aussi l'unique élément dictant la durée et la profondeur des paliers de décompression d'une plongée à l'air.
Paradoxalement, et malgré son nom, l'élément chimique « azote » est (avec le carbone, l'oxygène et l'hydrogène) un des composants principaux du vivant et des écosystèmes ainsi que des agrosystèmes. Il entre dans la composition des protéines (pour environ 15 %). L'azote est présent dans de très nombreux produits chimiques, dont certains pesticides à urées substituées.
L'azote a été et est encore exploité en tant qu'engrais naturel dans l'urée animale (ou humaine) et le guano (excréments secs d'oiseau ou de chauve-souris), notamment au Chili, au Pérou, en Inde, en Bolivie, en Espagne, en Italie et en Russie. Le nitre (nitrate naturel minéral) était autrefois récolté pour produire la poudre à canon.
Aujourd'hui, ses composés sont essentiellement produits industriellement par synthèse chimique pour de nombreux usages, dont :
La principale source d'azote alimentaire se retrouve dans les acides aminés. En effet les seuls organismes capables d'utiliser de l'azote atmosphérique sont les bactéries. Le bilan azoté est la seule manière connue de mesurer l'azote de manière non-invasive[réf. nécessaire]. En géologie par exemple, on irradie les cailloux pour quantifier la teneur en atome de certains éléments comme l'azote. Ceci n'est pas reproductible chez l'Homme pour des raisons éthiques.
Le bilan azoté est déduit en fonction des apports et des pertes en azote.
En pratique, le bilan azoté est estimé en fonction de l'excrétion urinaire d'urée selon deux formules :
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
1 | H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
8 | 119 | 120 | * | ||||||||||||||||||||||||||||||
* | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 |
Métaux alcalins | Métaux alcalino-terreux | Lanthanides | Métaux de transition | Métaux pauvres | Métalloïdes | Non-métaux | Halogènes | Gaz nobles | Éléments non classés |
Actinides | |||||||||
Superactinides |