Polychlorobiphényle

Polychlorobiphényle
Image illustrative de l’article Polychlorobiphényle
Structure chimique des polychlorobiphényles
Identification
Synonymes

biphényles chlorés
diphényles chlorés
PCB

No CAS 1336-36-3
No ECHA 100.014.226
No CE 215-648-1
Précautions
SGH
SGH08 : Sensibilisant, mutagène, cancérogène, reprotoxiqueSGH09 : Danger pour le milieu aquatique
AttentionH373 et H410H373 : Risque présumé d'effets graves pour les organes (indiquer tous les organes affectés, s'ils sont connus) à la suite d'expositions répétées ou d'une exposition prolongée (indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger)
H410 : Très toxique pour les organismes aquatiques, entraîne des effets à long terme
SIMDUT
D2A : Matière très toxique ayant d'autres effets toxiques
D2A, D2A : Matière très toxique ayant d'autres effets toxiques

Divulgation à 0,1 % selon la liste de divulgation des ingrédients
NFPA 704

Symbole NFPA 704

120
Classification du CIRC
Groupe 2A : Probablement cancérogène pour l'homme
Unités du SI et CNTP, sauf indication contraire.

Les polychlorobiphényles (PCB), aussi appelés biphényles polychlorés (BPC), ou encore parfois improprement dits « pyralènes » (du nom commercial d'un produit de Monsanto à base de PCB autrefois très utilisé en Europe dans les transformateurs) forment une famille de 209 composés aromatiques organochlorés dérivés du biphényle.

Vue d'un condensateur utilisant des PCB.Exemple de condensateur contenant des PCB, pour ses propriétés diélectriques.

Ils sont industriellement synthétisés, et chimiquement proches des polychloroterphényles, polychlorodibenzo-furanes et des dioxines.

Ce sont (selon leur teneur en chlore) des liquides plus ou moins visqueux, voire résineux, insolubles dans l'eau, incolores ou jaunâtres, à forte odeur aromatique. Très stables à la chaleur, ils ne se décomposent qu'à des températures dépassant 1 000 °C. Leur inertie chimique les rend peu sensibles aux acides, bases et oxydants. Ils peuvent dissoudre ou ramollir certains caoutchoucs et matières plastiques.

Les PCB sont toxiques, écotoxiques et reprotoxiques (y compris à faible dose en tant que perturbateurs endocriniens). Ce sont des polluants ubiquitaires (présents dans différents milieux) et persistants (demi-vie de 94 jours à 2 700 ans selon les molécules). Leur toxicité (en équivalent-toxique) est réputée varier selon leur poids moléculaire (cf. nombre d'atomes de chlore) et selon la configuration spatiale de leurs molécules. Très liposolubles, ils font partie des contaminants bioaccumulables fréquemment trouvés dans les tissus gras chez l'humain (dont le lait maternel). Ils sont classés comme « cancérogènes probables » (groupe 2A du CIRC) pour les cancers hépatobiliaires (cancer du foie, cancer des voies biliaires, cancer du pancréas)), et le PCB 126 a été classé cancérogène certain.

L’alimentation est la première source d'exposition aux PCB (90 % de l’exposition totale, surtout via des produits d’origine animale : poisson, viande, œufs, produits laitiers).

En France, fabriquer et utiliser des PCB est interdit depuis 1987 et les préfets peuvent (par arrêtés préfectoraux) réglementer la pêche quand la contamination dépasse certains seuils. L'analyse de sang ou de sérum permet de détecter une contamination car il y a une bonne corrélation entre les taux plasmatiques et les concentrations en PCB des tissus gras humains.

Invention et usages

Pays les plus consommateurs de PCB (données uniquement indicatives, car basées sur des calculs théoriques prenant le PIB en tant que référence Émissions de PCB dans l'atmosphère en Europe en 1990 selon l'Agence européenne de l'environnement. Selon les déclarations faites par les États-membres à l'Agence européenne de l'environnement, hormis au Portugal, les émissions directes de PCB dans l'air ont diminué en Europe durant la période 1990-2009 Importance relative (en %) des émissions historiques (par congénère chimique de PCB (estimation haute) selon Breivik K. et al., 2002. Selon le type de molécule, le produit est plus ou moins persistant et/ou toxique. Des effets synergiques sont plausibles entre certains congénères ou entre certains congénères et d'autres contaminants L'alimentation est la 1re source de contamination des organismes vivants.
Modélisation (faite en 1988) de l'évolution des quantités ingérées de PCB respectivement chez l'Adulte et chez l'enfant pour la période 1976-1982 ; période où les émissions de PCB dans l'eau, l'air et les sols ont commencé à diminuer à la suite de l'évolution de la réglementation Indicateurs d'évolution récente de l'exposition moyenne enfants et nourrissons à deux familles d'organochlorés (dioxines + PCB et leurs homologues chimiques). C'est chez les enfants que cette diminution est la plus marquée, en raison notamment des efforts et contrôles faits pour la qualité du lait et des produits lactés. Dans un laboratoire de biologie de l'EPA (Gulf Breeze), un système « pompe-seringue » contrôle le débit précis de dose de trois polluants organochlorés (PCB, DDT et dieldrine) délivrés dans l'eau d'un élevage expérimental et fermé d'huitres, pour étudier les effets de ces polluants Schéma de principe des phases de la biodégradation aérobie des PCB selon Adriaens P 1994 Schéma de biodégradation anaérobie (en l'absence d'oxygène) des PCB selon Abramowicz 1990 Pose d'étiquette informative sur différents transformateurs ou condensateurs contenant des PCB, en attente de leur décontamination (US Army corps of Engineers) Image faite au microscope électronique de bactéries du groupe des pseudomonas dont certaines peuvent biodégrader les PCB

Les PCB sont synthétisés pour la première fois à la fin du XIXe siècle dans le cadre d'une course aux brevets pour des colorants artificiels obtenus à partir d'hydrocarbures. C'est aux chimistes allemands Hermann Schmidt et Gustav Schultz que l'on doit cette fabrication pionnière pour le compte de AGFA.

D'après C. Gramaglia et M. Babut (2014), les PCB ont été redécouverts dans les années 1930, faisant aussitôt l'objet d'une production industrielle à mesure que les moyens techniques permettaient de produire le biphényle à partir du benzène, à faible coût. C’est d'abord l’entreprise Swann Chemical Research Inc., puis son repreneur Monsanto Chemicals Co. installés à Anniston en Alabama et Saint-Louis, Missouri (USA), qui, entre les années 1930 et 1971, ont développé pour la première fois des formules commerciales d’huiles et de résines à base de PCB vendues sous le nom d’Aroclor. La prospérité des PCB est avant tout dû à leur utilisation en tant qu'isolants dans les condensateurs et les transformateurs électriques de General Electric Co. (GE), de 1930 à 1977.

Les PCB sont apparus aux chimistes du début du XXe siècle intéressants pour leurs propriétés diélectriques.
Les principaux pays producteurs ont été l'Autriche, la Chine, la Tchécoslovaquie, la France, l’Allemagne, l’Italie, le Japon, l'ex-URSS, l’Espagne, le Royaume-Uni et les États-Unis.

Usages

Comme isolants électriques presque ininflammables et pour leurs excellentes caractéristiques diélectriques et de conduction thermique, les PCB ont été massivement utilisées des années 1930 aux années 1970 dans :

La toxicité aigüe des PCB a été constatée dès les années 1930 chez les ouvriers fabriquant et manipulant les produits,.

Tonnages

La quantité totale de PCB non-détruits est inconnue. Il en existe des stocks importants, et un volume très significatif a été diffusé dans l'environnement. À titre d'exemple :

Contamination environnementale

L'Union européenne reconnaît manquer de données concernant l'alimentation animale et constatait encore en 2012 que les analyses de laboratoires chargées des contrôles officiels sont souvent imprécises : « bien qu’il soit possible de parvenir à une limite de quantification inférieure, on constate qu’un grand nombre de laboratoires chargés des contrôles officiels appliquent une limite de quantification de 0,5 ng/kg de produit, voire de 1 ng/kg de produit » Les sols conservent les polluants organiques persistants (POP) durant au moins des décennies, voir des siècles. Les PCB peuvent y être aéroportés (les retombées atmosphériques sont significatives à localement importantes et sur les feuillages). Elles contribuent à la pollution à faible dose le plus souvent, mais générale du « fond pédogéochimique ». Mais (à partir de l'air ou des sols) les PCB semblent surtout véhiculés par l'eau puis rapidement stockés dans les sédiments car peu solubles dans l'eau. Parce que liposolubles, on les trouve ensuite concentrés dans la biomasse animale (bioturbation).
Au début des années 2000, on mesure des différences de contamination des sols d'un facteur 1000 entre les échantillons superficiels de sols du Groenland et d'Europe de l'Ouest: de 26 à 97 000 pg de PCB par gramme de sol sec (congénères/homologues inclus). Les sols de l'hémisphère nord se trouvent largement plus contaminés qu'ailleurs et la quantité de retombées atmosphériques a été estimée (2003) à 21 000 tonnes.

Les émissions ont beaucoup diminué et leurs concentrations semblent aujourd'hui faibles dans la plupart des pays (de quelques nanogrammes/gramme de sol ou sédiment hormis dans quelques hot-spots d'origine accidentelle : casse ou incendie de transformateur au pyralène par exemple) ou industrielle (jusqu'à plusieurs milligrammes/gramme). Mais de nombreuses études montrent qu'ils se sont accumulés dans presque tous les milieux et concentrés dans le gras de nombreuses espèces aquatiques notamment. Cela pose problème pour de nombreuses espèces de mammifères, poissons et oiseaux carnivores ou se nourrissant dans les sédiments. En Europe, on commence à étudier le réseau trophique aquatique via des bioindicateurs ou bioconcentrateurs, par exemple l'anguille d'Europe (très bioaccumulatrice de PCB) ou le barbeau ou la brème qui le sont un peu moins. Ils peuvent être comparés à des espèces peu bioaccumulatrices de PCB (gardon, perche, sandre ou vandoise).

En raison de leurs caractéristiques chimiques (liposolubilité notamment) et de leur rémanence (longue durée de vie liée à leur stabilité chimique et leur très faible biodégradabilité), les PCB sont des polluants encore fréquemment trouvés dans l'environnement : à proximité des lieux de production et d'élimination, sur les lieux d'accident, dans les sédiments sur de vastes zones, et par suite dans certaines boues de curage. On cherche à modéliser leur cinétique environnementale, en particulier en mer avec des modèles tridimensionnels numériques (par exemple en mer Noire). Les poissons marins et d'eau douce et leurs prédateurs (ex : loutre, phoque et oiseaux piscivores..) comptent parmi les organismes souvent contaminés. La consommation de poissons semble être la principale voie de contamination pour l'homme.

Effets sur l'environnement

Les effets écotoxicologiques des faibles doses de PCB, et des synergies à long terme sont quasiment inconnus. Selon Hélène Budzinski, écotoxicologue, « les lacunes qu'il nous reste à combler sont périphériques : comprendre l'effet chronique des faibles doses en mélange, savoir précisément d'un point de vue épidémiologique, environnemental, l'impact imputable aux PCB ou en lien avec ces composés mais associés à d'autres contaminants ». Les 209 PCB connus, dont 135 sont présents dans l'environnement, peuvent présenter des sous-produits d'oxydation dont les effets sont encore très peu étudiés.

Les PCB sont bioaccumulables dans le réseau trophique notamment par les poissons gras et de leurs prédateurs dont oiseaux pêcheurs et mammifères marins tels que cétacés.
Certains animaux prédateurs mobiles et grands migrateurs (phoques et cétacés en particulier) peuvent aussi les « exporter » (phénomène dit de « bioturbation ») dans des régions éloignées des sites pollués, via leurs déplacements et leurs cadavres à cause de la place qu'ils occupent dans la chaîne alimentaire.
Les anguilles, qui se nourrissent volontiers dans les sédiments et accumulent des graisses lors de leur vie dans les fleuves et les estuaires pour leur future migration, sont particulièrement concernées. Mais des animaux non-gras tels que les amphibiens peuvent aussi en accumuler de grandes quantités. Ainsi des foies de Rana catesbeiana échantillonnées dans 2 sites contaminés par une décharge contenaient de 2,33 et 2,26 ppm de PBB (soit jusqu'à près de 50 fois plus que les 0,05 ppm trouvés chez les grenouilles vivant dans un site de référence). Une autre espèce (Rana clamitans R.) avait sur ces sites aussi accumulé des taux élevés de PB (2,37 et 3,88 ppm, respectivement) que ceux du site de référence (0,02 ppm). Aucune variation temporelle des taux de PCB n'a été observée entre 1992 et 1993 chez ces deux espèces. Des PCB ont été recherchés dans le foie de couleuvres d'eau Nerodia sipedon (consommateurs de grenouilles). Les taux en étaient significativement plus élevés (13,70 ppm) dans le bassin versant contaminé que ceux sur le site de déchets lui-même (2,29 ppm) et dans deux sites de référence (2,50 et 1,23 ppm). Comparativement aux grenouilles, la bioaccumulation a été significativement plus élevée chez les couleuvres dans le bassin versant contaminé, mais aucune différence significative n'a été observée dans les concentrations de PCB par rapport à la taille ou au sexe ou à la masse corporelle des grenouilles et des serpents. Des PCB ont aussi été détectés dans les œufs de grenouilles et de serpents. Les résultats de cette étude fournissent des données de base et permettent de documenter la bioaccumulation des résidus de PCB dans les tissus de grenouilles et de serpents. Des PCB ont ensuite aussi été trouvés dans le plasma de couleuvres nord-américaines
Les effets sur la reproduction, la survie, la croissance, le développement, et la dynamique des populations des amphibiens ou serpents contaminés dans les habitats pollués sont encore inconnus.

Exposition humaine

Les PCB de type dioxine

Elle est apparue avec le développement de l'industrie du chlore et des organochlorés. Elle a été maximale à la fin du XXe siècle et décline, au moins dans certains pays. Ainsi, en Europe (UE-26), selon l'Autorité européenne de sécurité des aliments (AESA), pour 61 de 68 groupes observés en Europe, on observe (de 2000 à 2010) une diminution de l'exposition alimentaire, mais cette amélioration varie beaucoup (de 2 à 75,6 %) selon le groupe de population observé).

Les matières animales grasses sont la première source d'exposition alimentaire pour l'Homme. Les taux de PCB sont principalement liés à la consommation de poisson, mais d'autres facteurs sont importants dont la consommation de lait, premier aliment de la vie, souvent très consommé dans l'enfance. Pour cette raison, l’alimentation des habitants de l'archipel espagnol des Canaries a été étudiée par l'université de Las Palmas, de manière détaillée. Ils comptent en effet parmi ceux qui boivent le plus de lait en Espagne et en Europe, alors que - l'île ayant une balance commerciale agricole très déficitaire - l'essentiel du lait y est importé.
Les pesticides organochlorés et PCB ont été quantifiés dans 26 marques de lait (16 issues de l'agriculture intensive et 10 issus de marques « bio »). Résultats (publiés en 2012) : de l'hexachlorobenzène, du trans-chlordane et un PCB (PCB153) étaient présents dans presque tous les échantillons, indépendamment du type de lait ; Les taux de pesticides organochlorés étaient « très faibles », et plus bas dans les laits « bio » que dans ceux issus de l'élevage conventionnel, avec une dose journalière ingérée inférieure à la dose journalière tolérable (DJT, déterminée par les agences internationales), mais dans ces mêmes laits, si les taux de PCB étaient également « très faibles », contrairement aux pesticides organochlorés, ils présentaient des teneurs plus élevées dans les laits « bio » que dans les laits « conventionnels ». Les chercheurs ont en outre été surpris de trouver dans les deux types de lait des taux de PCB de type dioxine (PCB-DL) atteignant 25 pg TEQ-OMS par gramme de graisse dans le percentile 75, mettant en évidence que plusieurs marques étaient « fortement contaminés par ces substances toxiques », au point que les personnes consommant les marques de lait les plus contaminés peuvent chaque jour largement dépasser la dose journalière recommandée dans l'Union européenne (2 pg WHO-TEQ par kg b.w. par jour), ce qui est « préoccupant si l'on considère les effets bien connus pour la santé exercée par les composés de type dioxine » alertent les chercheurs. De plus, l'embryon et le fœtus peuvent déjà avoir été excessivement exposés à ces produits in utero, y compris dans ce même archipel des Canaries, bien que ce territoire soit très éloigné des sources habituelles industrielles ou agricoles d'organochlorés, comme cela a été montré en 2009 par une étude ayant porté sur cent femmes enceintes de l'île de Tenerife (l'une des Îles Canaries). On avait aussi constaté dans ces îles que le sérum dosé chez 1259 femmes enceintes par une étude de 2011) contenait du PCB153 (dans 95 % des cas). En 2012 une nouvelle étude a montré que de nombreux fromages (bio, y compris) étaient contaminés.

De manière générale, les taux de pesticides organochlorés augmentent chez les femmes enceintes avec l'âge, mais il chute chez les femmes qui ont allaité sur une durée de 12 mois cumulés ou plus, probablement en exposant alors un peu plus l'enfant allaité.
L'indice de masse corporelle était positivement associé aux taux de pesticides organochlorés dans les sérums de femmes enceintes, mais inversement proportionnel au taux de PCB.

En France, selon l'InVS (14 mars 2011), d'après les analyses faites en 2006-2007 chez 3 100 personnes dans le cadre du programme national nutrition santé (PNNS), le sang des français contient beaucoup plus de PCB que celui des Allemands et 4 à 5 fois plus que celui des Américains. 3,6 % des femmes en âge de procréer présentent une concentration en PCB totaux supérieure au seuil de 700 ng/g de lipides défini par l’Agence française de sécurité sanitaire des aliments (Afssa) et 0,4 % des autres adultes présentent une concentration supérieure au seuil de 1 800 ng/g de lipides.
En 2012, l'AESA a suggéré que les statistiques européennes manquaient cependant de fiabilité et que la stratégie européenne d'échantillonnage des aliments et des groupes de consommateurs devrait être redéfinie, avec en attendant une utilisation prudente des statistiques européennes, pour les raisons suivantes :

Lors des études comparatives, il convient de bien prendre en compte l'unité exprimant les résultats (par exemple en matières grasses, en poids total, sec ou humidité), car elle affecte considérablement l'estimation du risque et de l'exposition réelle.

Normes

Gestion du risque

Une attention particulière est à porter aux enfants, chez qui la première source de contamination est le lait et les produits laitiers, alors que les poissons, la viande et les fruits de mer le deviennent chez les adolescents et jusqu'à la vieillesse.

De façon générale, la gestion privée, publique et règlementaire du dossier PCB en Europe a été basée sur la réduction à la source et la destruction des stocks connus des autorités. Cette approche semble atteindre ses limites, au vu de la quantité de produits mise en circulation, laquelle continue à se bioaccumuler dans les organismes vivants et qui, pour partie, restera longtemps susceptible de continuer à circuler.
Par exemple, le canton suisse Fribourg a mis en évidence une contamination de la rivière par des PCB et/ou dioxines émanant d'une décharge désaffectée La Pila située à Hauterive en bordure de rivière. Cette ancienne décharge est aujourd'hui enforestée et abrite, semble-t-il, des déchets qui provenaient d’une usine de condensateurs. Plus de 4 000 décharges de ce type ont été recensées en Suisse, dont une centaine dans le seul canton de Fribourg

Ce type de produit, quand il est recherché, est trouvé dans de nombreux bassins et estuaires et ports estuariens car l'estuaire est un lieu « normal » de dépôt et d'accumulation de contaminants transportés par les fleuves ou leurs planctons, algues et animaux (via les phénomènes de bioturbation et de bioconcentration). En aval des bassins versants urbanisés et industrialisés, les estuaires risquent d'être presque tous concernés. Au vu du nombre de productions alimentaires qui vont devoir gérer cette problématique durant une longue période, de nombreux acteurs attendent une position claire des instances européennes qui ont coordonné la gestion de cette problématique, et que les estuaires soient de manière urgente reconnus comme des lieux particuliers nécessitant un suivi et une gestion prenant en compte les faits, qui doivent être accessibles.

Technologies de destruction des PCB

La loi impose aux propriétaires de gérer les PCB dont ils prônent l’utilisation. Que ce soit en les détruisant ou en les entreposant, les différentes techniques doivent être mises en œuvre de façon sécurisée jusqu'à ce que les PCB soient détruits conformément aux directives en vigueur (nationales, européennes, etc.). Trois méthodes sont communément pratiquées par plusieurs pays :

Incinération

Les PCB sont extrêmement stables et ont une température de combustion très élevée (de 1 100 °C à 1 300 °C,). Une température élevée des gaz de combustion est nécessaire avant, pendant et après l'incinération pour éviter la formation de dioxines et de furanes lors de la condensation des gaz. Trois grands types d’incinérateurs peuvent détruire des PCB ; à injection liquide, à four rotatif ou par chaudière à haut rendement. Le Canada semble avoir privilégié le four rotatif, jugé avantageux car permettant une destruction totale des PCB. De ce fait, une économie sur les coûts de combustible après l'incinération est assurée ainsi qu’une combustion non polluante en situation d'urgence. La combustion mal contrôlée à haute température de composés organiques chlorés peut encore produire des fumées à forte concentration de dioxines cancérigènes et toxiques.

Technologies chimiques, thermochimiques et mécanochimiques

Des huiles minérales peuvent d'abord être décontaminées par un procédé chimique au sodium. Le sodium réactif permet d'éliminer les atomes de chlore de la molécule de PCB (ce chlore étant à la source du danger des PCB) et produit du polyphénylène et du chlorure de sodium. L'huile minérale décontaminée peut être réutilisée, mais cette technique très coûteuse produit un volume élevé de déchets à forte teneur en sels.
Les procédés thermochimiques reposent eux sur l'injection d'hydrogène afin de remplacer l'air occupant l'espace libre. Lorsque l'oxygène est éliminé, les PCB ne peuvent être oxydés en dioxines. Afin d’amorcer la réaction, le contenu du réacteur est chauffé à des températures supérieures à 850 °C. Les PCB subissent une réaction de réduction chimique, dans laquelle chacun des atomes de chlore est remplacé par un atome d'hydrogène. Le cycle biphénylique hydrogéné se fragmente alors pour produire deux molécules de benzène. Ce procédé n'émet aucun gaz de combustion, mais produit un volume significatif de déchets toxiques. Un autre procédé australien « mécanochimique » est basé sur un processus de collisions où le réactif, (oxyde de calcium), est placé dans un broyeur à billes d'acier. Sous l'effet de la collision des billes, certaines réactions chimiques seraient accélérées et entraîneraient par ce fait même une décomposition « virtuelle » des déchets. Contrairement aux deux autres procédés, il ne nécessite aucun apport de chaleur et les déchets se trouveraient convertis sans danger pour l’environnement.

Dégradation biologique

Durant les 30 ans où des PCB ont été « incubés » en présence de bactéries anaérobies, l'évolution et les échanges génétiques ont fait émerger de nouvelles souches bactériennes ayant une action déchlorante sur les PCB, par exemple dans le fleuve Hudson.
Des chercheurs,,, étudient pour les reproduire ou les amplifier (en réacteur sous conditions contrôlées) ces processus naturels observés de biodégradation des PCB. La lente biodégradation existant dans la nature se fait en deux phases :

  1. des bactéries anaérobies peuvent d'abord progressivement déchlorer les PCB,,, ;
  2. les cycles biphényliques déchlorés, s'ils sont transférés en condition aérobie (sur l'écotone Eau-Sédiment par exemple ou sur le biofilm émergé) sont alors accessibles à certaines bactéries à action oxydante qui peuvent en poursuivre la biodégradation.

Une large décontamination in situ demande cependant encore des études (dont sur l'éventuelle toxicité de certains métabolites). Ceci peut prendre de nombreuses années, voire plusieurs décennies.

Les champignons ou des enzymes extraits de champignons pourraient aussi dans le futur contribuer à dégrader de nombreux organochlorés (fongoremédiation...).

Effets sur la santé humaine

Cette section contient des informations obtenues de différentes sources,,.

Toxicité

La toxicité des PCB n'est plus discutée, mais selon le documentaire « Le monde selon Monsanto », Monsanto aurait eu connaissance de la toxicité des PCB au moins dès 1937, et a contaminé la ville d'Anniston en Alabama sans précaution « pour ne pas perdre un dollar de vente ».
Dans le procès « Abernathy v. Monsanto », le 23 février 2002, le jury déclare Monsanto et Solutia coupables d’avoir pollué « le territoire d’Anniston et le sang de sa population avec les PCB ». Ce n'est que dans les années 1980-1990, avec les progrès de l'instrumentation de mesure que les scientifiques ont pu alerter avec certitude.

Chez l'animal Chez l'Homme Dans l'environnement

Pour ces raisons, depuis les années 1990, les PCB comptent parmi les polluants organiques persistants, dont la production est interdite dans la convention de Stockholm sur les polluants organiques persistants.

Effets généraux

La plupart des PCB sont des cancérogènes probables, des perturbateurs endocriniens et/ou des inducteurs enzymatiques susceptibles de perturber le métabolisme.
Ces molécules sont rarement recherchées - hors risques liés à une exposition professionnelle - car les analyses en sont encore très coûteuses et nécessitent une interprétation par un spécialiste. Il est parfois considéré comme un traceur d'autres organochlorés (dioxines, furanes).

Risque cancérigène - L'agent et/ou le mélange est classé par le CIRC comme « probablement cancérogène pour l'homme » (groupe 2A). Pour le N.T.P. : « La substance est raisonnablement anticipée cancérogène » (R).

Impact immunitaire - Selon une recherche réalisée dans l'archipel des îles Féroé, l'ingestion de PCB par les mères (via la consommation de poisson et de graisse de baleine riche en PCB) induit une réduction des réponses immunitaires chez leurs enfants. Les PCB pouvant être transmis de la mère à l'enfant via le lait maternel, les chercheurs pensent que la majeure partie du transfert pourrait se faire par l'allaitement. Les résultats de cette étude suggèrent que c'est dans la petite enfance que l'impact des PCB est le plus important. Au printemps 2008, l’ASEF (Association santé environnement France) et le World Wide Fund for Nature ont réalisé une campagne de prélèvements sanguins auprès de 52 volontaires pour mesurer l’imprégnation aux PCB des riverains du Rhône consommateurs de poisson, mais aussi de pêcheurs de la Seine et de la Somme. Les résultats obtenus ont été jugés « préoccupants » puisqu’ils témoignent d’une imprégnation des consommateurs de poissons quatre à cinq fois supérieure aux autres groupes tests.

Toxicocinétique et métabolisme

Sources : Les PCB sont essentiellement absorbés via l'alimentation, mais aussi par inhalation ou passage percutané dans des situations particulières (professionnelles, accidents).
Les PCB les plus lourds (comprenant plus d'atomes de chlore; heptachlorobiphényles) s'accumulent plus dans l'organisme que les PCB peu chlorés, mais ils sont réputés moins toxiques.
On a retrouvé des PCB à tous les niveaux du réseau trophique, surtout dans les tissus adipeux des espèces vivantes situées au bout de celle-ci : poissons, phoques, belugas (cf. Thalassa du 12 juin 2009), oiseaux et finalement l'homme.

Chez l'homme :

Des traces sont trouvées dans le lait maternel.

Ces analyses ont d'abord incité à n'utiliser des PCB qu'en systèmes clos prévus pour pouvoir récupérer, régénérer ou détruire les PCB usagés (et les appareils en ayant contenu)

Cinétique

Une fois dans l'organisme, les PCB sont biotransformés en métabolites hydroxylés. Une partie est éliminée via les selles et moindrement dans les urines (forme inchangée ou hydroxylée), le reste est stocké dans les tissus gras et le foie.
La Demi-vie dans le sang (plasmatique) est caractérisée par deux phases, la première dure une quinzaine de jours, avec métabolisation et élimination d'une partie du produit. La seconde durerait plusieurs années.

En Europe

L’Union européenne a revu à la baisse les concentrations maximales admissibles de PCB dans les poissons destinés à être mangés par l'homme, ce qui a localement induit des interdictions de pêche et/ou de commercialisation de poissons en vue de la consommation (dont le Rhône, la Seine et l'Oise).

En France

Les PCB ont beaucoup fait parler d'eux à l'automne 2007 à la suite de la médiatisation du problème de la pollution du Rhône par ces produits et en raison d'une étude conduite par les réseaux de surveillance des milieux aquatiques du ministère de l'écologie et des Agences de l'eau. Cette étude confirme en effet que la Seine (aval de Rouen), la Loire, l'Allier, le Rhin, la Moselle, les canaux de l'Artois-Picardie sont également touchés par une pollution chronique par les PCB (sur 852 prélèvements et observations, 40 % sont qualifiés de « préoccupants »). Les sites les plus pollués semblent généralement corrélés avec la présence à proximité ou en amont du bassin de sites industriels suivis par les Directions Régionales de l'Industrie et de la Recherche (DRIRE).

Une carte présentée par Nathalie Kosciusko-Morizet (secrétaire d'État à l'Écologie) et faite par la direction de l'Eau du ministère de l'Écologie, présentant 852 sites moyennement à « extrêmement pollués » montre que le Nord, la vallée de la Seine, et l'Est de la France semblent les plus touchés (31 sites très à extrêmement pollués). En France, environ 500 000 transformateurs et condensateurs au PCB ont été recensés, qui doivent être détruits avant 2010, mais les PCB ont eu d'autres usages mal contrôlés et suivis.

Plaquette informative fixée sur un transformateur de distribution, indiquant sa décontamination (« suivant décret no 2001-63 du 18 janvier 2001 »)

Un « plan d'action PCB » (suivi par l’ADEME) vise six priorités :

  1. diminuer les rejets (de PCB) ;
  2. améliorer la connaissance scientifique sur la cinétique environnementale des PCB dans les milieux aquatiques et les cultures irriguées (avec le SRPV) et gérer cette pollution, voire mettre en œuvre « d'éventuels chantiers de dépollution », avec éventuelle « dépollution in situ » et benchmarking, (suivi par le CEMAGREF, avec invitation du pôle de compétitivité chimie-environnement de Rhône-Alpes (pôle AXELERA) à s'associer aux études) ;
  3. mieux contrôler les poissons consommés et établir un dispositif approprié de gestion des risques. Une alimenthèque est prévue pour d'éventuelles futures études rétrospectives ;
  4. développer la connaissance des risques sanitaires et leur prévention (via notamment le programme de surveillance imposé par la Directive cadre européenne sur l’eau (DCE), qui demande la recherche des PCB dans les poissons (plan d'échantillonnage, au moins dans les 300 sites répertoriés comme les plus pollués (plus de 10 ng/g MS) ou situés en aval de zones connues comme source ancienne ou contemporaine de PCB), avec suivi d'espèces bioindicatrices. Idem pour les sédiments (un suivi sera poursuivi sur au moins 375 sites en France); L’InVS et l’AFSSA mesureront l’imprégnation des consommateurs des poissons de rivière par les PCB durant 2 à 3 ans pour identifier et quantifier une éventuelle sur-imprégnation des gros consommateurs de poissons de rivière (anguille en particulier) et pour en détecter les principaux déterminants, ainsi que pour mesurer le niveau d’imprégnation des populations sensibles (enfants, femmes enceintes, immunodéprimés, etc.). Des recommandations de consommation de poissons pourront alors être faites, la France n'envisageant pas à ce stade d'appliquer le principe de précaution (par espèces et/ou par zones). Ces données contribueront à la future réglementation communautaire sur les PCB-NDL (discussions européennes en cours en 2008-2009 sur des teneurs maximales dans certains aliments à risque) ;
  5. accompagner les pêcheurs professionnels et amateurs impactés par les mesures de gestion des risques ;
  6. évaluer la situation et rendre compte des progrès du plan dans tableau de bord (devant être réactualisé tous les 3 mois et en ligne sur le site du ministère de l’écologie) sous l'égide d'un comité national de pilotage et de suivi.

De son côté, l’AFSSA, dans un avis, a proposé une stratégie de prélèvements des poissons de rivière, pour :

  1. éviter la consommation de poissons non conformes pour les PCB ;
  2. hiérarchiser les risques par espèce de poissons.

Ce plan d’échantillonnage devrait permettre un arbre de décision (page 11 du plan national) permettant trois scénarios de gestion :

  1. consommation autorisée, sans restriction pour les espèces « sans risque pour le consommateur » ;
  2. toutes les espèces sont probablement contaminées avec un dépassement des limites maximales réglementaires, avec donc un risque pour tout ou partie des consommateurs (interdiction de consommation possible) ;
  3. quelques espèces dépassent les limites maximales réglementaires, avec un risque sanitaire pour tout ou partie des consommateurs de ces espèces. Des interdictions restreintes aux espèces et/ou lieux fortement contaminés.

L’AFSSA a déjà recommandé aux populations toxicologiquement les plus sensibles (femmes en âge de procréer, enfants de moins de 3 ans) de manger du poisson deux fois par semaine, mais en diversifiant les espèces et zones de pêche, tout en évitant les poissons « gras » venant des zones connues comme étant les plus contaminées par les PCB. En 2011, une circulaire donne aux préfets des consignes pour mettre en œuvre des mesures de gestion dans le cadre du plan national d'actions.

Exemples de contaminations historiques

Formules chimiques et nomenclature des molécules de PCB

Structure chimique des polychlorobiphényles

Homologues

Les PCB sont des molécules de biphényle dans lesquelles des atomes de chlore remplacent des atomes d'hydrogène. La molécule de biphényle possédant dix atomes d'hydrogène (dans les positions 2 à 6 et 2' à 6'), les PCB comportent un nombre d'atomes de chlore qui varie de 1 à 10.

On appelle « homologues », les dix degrés de chloration, nommés monochloro-biphényl, dichloro-biphényl... nonachloro-biphényl et décachloro-biphényl.

Classification ou numérotation des congénères

Article détaillé : Liste des congénères du PCB.

Il existe 209 congénères chimiques parmi les PCB, correspondant chacun à l'une des 209 combinaisons possibles dans la répartition des atomes de chlore, sur la molécule de biphényle.
Ils peuvent être classés dans deux catégories selon leurs propriétés toxicologiques :
12 d'entre eux présentent des propriétés toxicologiques comparables à celles des dioxines. On les dit « PCB de type dioxine ».
/Les autres PCB ont un profil toxicologique différent.

L'utilisation de la nomenclature chimique classique, pour les PCB, donne des noms trop lourds à manipuler. Par exemple, le plus chloré des PCB est nommé « 2,2',3,3',4,4',5,5',6,6' décachloro-biphényle ». Pour simplifier cette désignation, en 1980, Ballschmiter et Zell ont introduit une numérotation de 1 à 209 des différents congénères. Ainsi, le décachloro-biphényl est usuellement désigné sous la forme C209, PCB209 ou PCB-209. Ce système de désignation a été universellement adopté, avec toutefois quelques variantes, supprimées au début des années 1990.

Remarque : les trois premiers congénères ne comportant qu'un seul atome de chlore, ne sont pas « polychlorés », mais par simplification, on les compte quand même parmi les biphényles polychlorés. Par le même processus de simplification, on rencontre également la notation PCB-0, pour désigner le biphényle non-chloré.

Nomenclature

Pour presque tous les congénères, il existe plusieurs notations possibles, correspondant à la même structure moléculaire. Ces différences ont trois origines :

Deux listes de noms sont proposées : celle de l'IUPAC et celle de Ballschmiter et Zell (BZ). Dans ces deux listes, pour chaque congénère, on choisit le premier nom parmi les noms possibles, en les classant comme dans les classements alphabétiques (classement séquentiel de gauche à droite), dans l'ordre suivant : 2, 2', 3, 3', 4, 4', 5, 5', 6, 6'.

Dans le système BZ, pour minimiser le nombre de « prime », on remplace ce premier nom par le suivant, lorsque celui-ci présente les mêmes chiffres mais avec un nombre de « prime » inférieur. Cette règle ne concerne que dix congénères, à l'origine de la différence entre ces deux listes.

C'est la liste de l'IUPAC qui est la plus utilisée.

Marques et dénominations des mélanges commerciaux de PCB

Des PCB portent un nom commercial (marques) dont certains assez largement connus pour être passés dans le langage courant.
Des PCB ont ainsi été vendus aux États-Unis sous le nom Asbestol, Bakola131, Chlorextol ou plus souvent d'Aroclor (marque de Monsanto). On l'a trouvé sous le nom de Phenochlor et Pyralène en France (par Prodelec). On l'a appelé Askarel aux États-Unis et Royaume-Uni, Apirolio en Italie. Bayer l'a vendu sous les noms de Clophen aux États-Unis et en Allemagne, Delor en Tchécoslovaquie, Fenclor en Italie, Hydol aux États-Unis. Westinghouse l'a vendu sous le nom de Inerteen aux États-Unis. Kanegafuchi l'a vendu comme Kanechlor au Japon et Noflamol aux États-Unis. General Electric l'a vendu comme Pyranol et Pyrenol aux États-Unis, et Pyroclor au Royaume-Uni, Saft-Kuhl aux États-Unis, Sovol et Sovtol dans l'ex-URSS et Therminol aux États-Unis,.

Des PCB portent un nom commercial (marques) dont certains assez largement connus pour être passés dans le langage courant.
Des PCB ont ainsi été vendus aux États-Unis sous le nom Asbestol, Bakola131, Chlorextol ou plus souvent d'Aroclor (marque de Monsanto). On l'a trouvé sous le nom de Phenochlor et Pyralène en France (par Prodelec). On l'a appelé Askarel aux États-Unis et Royaume-Uni, Apirolio en Italie. Bayer l'a vendu sous les noms de Clophen aux États-Unis et en Allemagne, Delor en Tchécoslovaquie, Fenclor en Italie, Hydol aux États-Unis. Westinghouse l'a vendu sous le nom de Inerteen aux États-Unis. Kanegafuchi l'a vendu comme Kanechlor au Japon et Noflamol aux États-Unis. General Electric l'a vendu comme Pyranol et Pyrenol aux États-Unis, et Pyroclor au Royaume-Uni, Saft-Kuhl aux États-Unis, Sovol et Sovtol dans l'ex-URSS et Therminol aux États-Unis,.

Différents mélanges commerciaux peuvent être principalement caractérisés par leur degré de chloration. Lors de l'analyse qualitative des PCB, il est généralement fait référence à la gamme de Monsanto pour les désigner.

Cette gamme est composée des Aroclor 1221, 1232, 1016, 1242, 1248, 1254, 1260, 1262 :

Méthode d’analyse

Détermination des biphényles polychlorés par congénères : dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse (GC-MS). Cette technique analytique, par exemple retenue par le Laboratoire d’analyse et d’étude de la qualité du milieu du Centre d’expertise en analyse environnementale du Québec, est utilisée pour le dosage des PCB par congénère dans les eaux souterraines, les eaux de surface et les eaux de consommation.

Le dosage consiste à rapporter spécifiquement 41 congénères de PCB qui sont ciblés soit pour leur toxicité, soit pour leur persistance dans l’environnement. Les congénères convoités peuvent servir à générer des facteurs de réponse moyens qui permettent de calculer la concentration des autres PCB présents dans l’échantillon. Un total, défini comme « PCB totaux », est obtenu par la somme des 41 congénères spécifiques et des autres PCB non étalonnés. Les matrices utilisées sont les eaux souterraines, les eaux de surface ainsi que les eaux de consommation.

Principes

Conditions chromatographiques

Critères d’identification des PCB et expression des résultats

Voir aussi

Articles connexes

Liens externes

Bibliographie

Références

  1. « ESIS » (consulté le 6 décembre 2008)
  2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, « Evaluations Globales de la Cancérogénicité pour l'Homme, Groupe 2A : Probablement cancérogènes pour l'homme », sur monographs.iarc.fr, CIRC, 16 janvier 2009 (consulté le 22 août 2009)
  3. Numéro index 602-039-00-4 dans le tableau 3.1 de l'annexe VI du règlement CE no 1272/2008 (16 décembre 2008)
  4. « Biphényle polychloré » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
  5. Source : Plan national français
  6. Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Wærn F, Zacharewski T, 1998. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environ Health Perspect, 106, 775-792.
  7. Gladen BC, Rogan WJ, Hardy P, Thullen J, Tingelstad J, Tully M. Development after exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene transplacentally and through human milk. J. Pediatr 1988;113:991-995
  8. Centre Léon-Bérard, Site Cancer et environnement (consulté le 25 août 2011)
  9. Breivik, K ; Sweetman, A ; Pacyna, JM ; Jones, KC (2002), Towards a global historical emission inventory for selected PCB congeners — a mass balance approach 1. Global production and consumption, The Science of the Total Environment, 290 81–198
  10. Scientific report of Efsa ; Update of the monitoring of levels of dioxins and PCBs in food and feed, EFSA Journal 2012, 10(7):2832
  11. « Knowledge and Competitive Advantage: The Coevolution of Firms, Technology, and National Institutions », sur eh.net (consulté le 15 août 2022)
  12. (de) Hermann Schmidt, « Ueber Benzidin (alpha-Diamidodiphenyl) », Über Diphenylbasen,‎ 1881, p. 320-347
  13. Christelle Gramaglia et Marc Babut, « L’expertise à l’épreuve d’une controverse environnementale et sanitaire : la production des savoirs et des ignorances à propos des PCB du Rhône (France) », VertigO, no Volume 14 Numéro 2,‎ 12 septembre 2014 (ISSN 1492-8442, DOI 10.4000/vertigo.15067, lire en ligne, consulté le 15 août 2022)
  14. (en) US EPA National Center for Environmental Assessment, « The toxicity of certain benzene derivatives and related compounds », sur hero.epa.gov, 15 mars 2009 (consulté le 3 janvier 2023)
  15. (en) C. K. Drinker, M. F. Warren et G. A. Bennett, « The Problem of Possible Systemic Effects from Certain Chlorinated Hydrocarbons. », The Journal of industrial hygiene and toxicology,‎ 1937 (lire en ligne, consulté le 3 janvier 2023)
  16. Document Guide ONU
  17. Considérant no 7 du règlement 277/2012 (P 2/7)
  18. Tanabe S, Hidaka H, Tatsukawa R, PCBs and chlorinated hydrocarbon pesticides in Antarctic atmosphere and hydrosphere, Chemosphere 12(2):277-288 (1983).
  19. Buckley EH. Accumulation of airborne polychlorinated biphenyls in foliage. Science 216:520 (1982).
  20. S.N. Meijer et al., Global Distribution and Budget of PCBs and HCB in Background Surface Soils: Implications for Sources and Environmental Processes, Environ. Sci. Technol., 2003, 37, 667-672
  21. Lyubartseva, S. P., Ivanov, V. A., Bagaev, A. V., Demyshev, S. G., Zalesny, V. B, Three-dimensional numerical model of polychlorobiphenyls dynamics in the Black Sea, avril 2012 (ISSN 1569-3988), DOI 10.1515/rnam-2012-0004 (résumé)
  22. Hugla, J. L., Dohet, A., Thys, I., Hoffmann, L., & Thomé, J. P. (1998, June). Contamination par les PCBs et les pesticides organochlorés des poissons du Grand-Duché de Luxembourg: incidence possible sur les populations de loutre (Lutra lutra L.). In Annales de Limnologie-International Journal of Limnology (Vol. 34, No. 02, pp. 201-209). EDP Sciences (résumé).
  23. Lire dans son intégralité le point de vue des médecins de l'ASEF sur les PCB, sur asef-asso.fr
  24. H. Budzinski, Directrice de recherche de physico et toxico-chimie de l’environnement à Bordeaux I, PCB : comprendre l'effet chronique des faibles doses en mélange, Actu-environnement, 2012-08-27
  25. (comté de Pickens, Caroline du Sud)
  26. Bishop CA, Rouse JD., Chlorinated hydrocarbon concentrations in plasma of the Lake Erie water snake (Nerodia sipedon insularum) and northern water snake (Nerodia sipedon sipedon) from the Great Lakes basin in 1998 ; Arch Environ Contam Toxicol. 2000 Nov; 39(4):500-5 (résumé)
  27. Fontenot LW, Noble GP, Akins JM, Stephens MD, Cobb GP., Bioaccumulation of polychlorinated biphenyls in ranid frogs and northern water snakes from a hazardous waste site and a contaminated watershed. (résumé), Chemosphere, avril 2000, 40(8):803-9.
  28. M. Van den Berg et al., « The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds », Toxicological Sciences, vol. 93, no 2,‎ 2006, p. 223–241 (PMID 16829543, DOI 10.1093/toxsci/kfl055)
  29. J. Ibarluzea et al., Sociodemographic, reproductive and dietary predictors of organochlorine compounds levels in pregnant women in Spain, Chemosphere, vol. 82, chap. 1, janvier 2011, p. 114–120 (résumé)
  30. O.P. Luzardoa, M. Almeida-Gonzáleza, L.A. Henríquez-Hernándeza, M. Zumbadoa, E.E. Álvarez-Leónb, L.D. Boada, Polychlorobiphenyls and organochlorine pesticides in conventional and organic brands of milk : Occurrence and dietary intake in the population of the Canary Islands (Spain), Chemosphere, vol. 88, issue 3, juillet 2012, p. 307-315 (résumé)
  31. Octavio P. Luzardoa, Vikesh Mahtani, Juan M. Troyano, Margarita Álvarez de la Rosa, Ana I. Padilla-Pérez, Manuel Zumbado, Maira Almeida, Guillermo Burillo-Putze, Carlos Boada, Luis D. Boad, Determinants of organochlorine levels detectable in the amniotic fluid of women from Tenerife Island (Canary Islands, Spain), Environmental Research, vol. 109, issue 5, juillet 2009, p. 607–613 (Résumé)
  32. Maira Almeida-González, Octavio P. Luzardo, Manuel Zumbado, Ángel Rodríguez-Hernández, Norberto Ruiz-Suárez, Marta Sangil, María Camacho, Luis A. Henríquez-Hernández, Luis D. Boada, Levels of organochlorine contaminants in organic and conventional cheeses and their impact on the health of consumers: An independent study in the Canary Islands (Spain), Food and Chemical Toxicology, vol. 50, issue 12, décembre 2012, p. 4325-4332 (résumé)
  33. Geneviève De Lacour (2011), Pesticides : une prise de sang qui fait mal, 11 avril 2011
  34. Scientific report of Efsa; Update of the monitoring of levels of dioxins and PCBs in food and feed, EFSA Journal, 2012 ; 10(7):2832, p. 3, 24, 82 p.
  35. 18 analyses seulement faites et communiquées à l'Europe en près de 10 ans pour un total de 26 pays européens selon le rapport de l'AESA (2012)
  36. Directive 2002/32/CE
  37. Source (blog.mondediplo.net, 30 août 2007)
  38. http://www.chem.unep.ch/POPs/pdf/pcbdestfr.PDF
  39. http://www.dree.org/documents/129/67872.pdf
  40. Brown JF, Bedard DL, Brennan MJ, Carnahan JC, Feng H, Wagner RE. PCB dechlorination in aquatic sediments. Science 236 :709-712 (1987).
  41. Aerobic and Anaerobic PCB Biodegradation in the Environment, par Daniel A. Abramowicz, in Environmental Laboratory, GE Corporate Research and Development, Schenectady, New York (1995))
  42. Abramowicz DA. Aerobic and anaerobic biodegradation of PCBs: a review. In: CRC Critical Reviews in Biotechnology, Vol 10 (Steward GG, Russell I, eds). Boca Raton, FL:CRC Press, 1990;241-251.
  43. 8. Bedard DL. Bacterial transformations of polychlorinated biphenyls. In: Biotechnology and Biodegradation, Advances in Applied Technology Series, Vol 4 (Kamely D, Chakrabarty A, Omenn GS, eds). The Woodlands, TX:Portfolio Publishing, 1990;369-388.
  44. Furukawa K. Microbial degradation of polychlorinated biphenyls (PCBs). In: Biodegradation and Detoxification of Environmental Pollutants (Chakrabarty AM, ed). Boca Raton, FL:CRC Press, 1982;33-57.
  45. Furukawa K. Modifications of PCBs by bacteria and other microorganisms. In PCBs and the Environment, vol. 2 (Waid JS, éd.). Boca Raton, FL:CRC Press, 1986;89-100.
  46. Quensen JF III, Tiedje JM, Boyd SA. Reductive dechlorination of PCBs by anaerobic microorganisms from sediments. Science 242 :752-754 (1988).
  47. Quensen JF III, Boyd SA, Tiedje JM. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl Environ Microbiol 56:2360-2369 (1990).
  48. Abramowicz DA, Brennan MJ, Van Dort HM. Anaerobic biodegradation of polychlorinated biphenyls. In: Extended Abstracts of American Chemical Society National Meeting, Div Environ Chem 29(2):377-379 (1989).
  49. Abramowicz DA, Brown JF Jr, O'Donnell MK. Anaerobic PCB dechlorination in Hudson River sediments. In: General Electric Company Research and Development Program for the Destruction of PCBs, Tenth Progress Report. Schenectady, NY:General Electric Corporate Research and Development, 1991, 17-30.
  50. Santé humaine et environnement : les risques posés par les PCB (BP392f)
  51. Report on Carcinogens, 11th edition. Research Triangle Park, NC : U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. (2005). (Site Web
  52. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Overall evaluations of carcinogenicity : an updating of IARC monographs volumes 1-42. IARC monographs on the evaluation of carcinogenic risks to humans, Supplement 7. Lyon : International Agency for Research on Cancer. (1987). Monographie
  53. IARC Working Group on the Evaluation of Carcinogenic Risks of Chemical to Man, Some anti-thyroid and related substances, nitrofurans and industrial chemicals. IARC monographs on the evaluation of carcinogenic risks of chemical to man, Vol. 7. Lyon : International Agency for Research on Cancer. (1974). (IARC)
  54. Documentaire d'Arte d'après « Le monde selon Monsanto »
  55. Sawyer LD., Quantitation of polychlorinated biphenyl residues by electron capture gas-liquid chromatography: reference material characterization and preliminary study, J. Assoc. Off. Anal. Chem., 1978 ; 61:272-281
  56. Dose mortelle pour 50 % de la population au bout de huit jours
  57. Annexe I, section V (dioxines et PCB), de la directive 2002/32/CE, mise à jour en 2012
  58. Falandysz J., Yamashita N., Tanabe S., Tatsukawa R., Ruciñska L., Mizera T. & Jakuczun B. (1994). Congener-specific analysis of polychlorinated biphenyls in white-tailed sea eagles Haliaeetus albicilla collected in Poland. Archives of Environmental Contamination Toxicology. 26 : 13-22
  59. Martin van den Berg et al., «The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds», Toxicological Sciences 93(2), p. 223 à 241 (2006)
  60. AESA, Results of the monitoring of dioxin levels in food and feed, EFSA Journal, 22 juillet 2010, 8(3):1385.
  61. AESA, Rapport de l'EFSA sur la présence dans les aliments pour animaux et dans les denrées alimentaires, EFSA Journal (2005) 284, p. 1-137.
  62. Rogan WJ, Gladen BC, McKinney JD et al., Polychlorinated biphenyls (PCBs) and dichloro diphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation, Am. J. Public Health, 1986;76:172-177
  63. W. J. Rogan, Pollutants in Breast Milk, Arch. Pediatr. Adolesc. Med., 1er septembre 1996, 150(9): 981 - 990.
  64. Jensen AA., Polychlorobiphenyls (PCBs), polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) in human milk, blood and adipose tissue, Sci. Total Environ., 1987 ; 64:259-293
  65. Avis de l’Agence française de sécurité sanitaire des aliments relatif aux bénéfices/risques liés à la consommation de poissons. 14 juin 2010
  66. « Oméga-3 contre polluants : quels poissons privilégier ?, Natura Sciences »
  67. Sikka, S. C. and Wang, R. (2008), . Asian Journal of Andrology, 10: 134–145. doi: 10.1111/j.1745-7262.2008.00370.x (Résumé, en anglais)
  68. J L Jacobson, H E Humphrey, S W Jacobson, S L Schantz, M D Mullin et R Welch, Determinants of polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), and dichlorodiphenyl trichloroethane (DDT) levels in the sera of young children, American Journal of Public Health, vol. 79, issue 10 1401-1404, 1989 (Résumé, en anglais)
  69. W. G. Foster, J. F. Jarrell, E. V. Younglai, M. G. Wade, D. L. Arnold et S. Jordan, An Overview of Some Reproductive Toxicology Studies Conducted At Health Canada Toxicology and Industrial Health, 1er mai 1996, 12(3-4), 447 - 459.
  70. Chen Y-C, Guo Y-L, Hsu C-C, Rogan WJ. Cognitive development of Yu-Cheng (“oil disease“) children prenatally exposed to heat-degraded PCBs. JAMA 1992;268:3213-3218
  71. Guide ONU
  72. Rogan WJ, Gladen BC, Hung KL et al., Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan, Science 1988 ; 241:334-336
  73. Fein GG, Jacobson JL, Jacobson SW, Schwartz PM, Dowler JK, Prenatal exposure to polychlorinated biphenyls: effects on birth size and gestational age, J. Pediatr. 1984 ; 105:315-320
  74. Rogan WJ, Gladen BC, McKinney JD et al., Neonatal effects of transplacental exposure to PCBs and DDE, J. Pediatr. 1986, 109:335-341
  75. Jacobson JL, Jacobson SW, Humphrey HEB, Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children, J. Pediatr. 1990;116:38-45
  76. S. W. Jacobson, L. M. Chiodo et J. L. Jacobson, Breastfeeding Effects on Intelligence Quotient in 4- and 11-Year-Old Children, Pediatrics, 1er mai 1999, 103(5) : e71 - e71.
  77. Jacobson JL, Jacobson SW, Humphrey HEB. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol. Teratol. 1990 ; 12:319-326
  78. Joseph L. Jacobson, Ph.D. et Sandra W. Jacobson, Ph.D., Intellectual Impairment in Children Exposed to Polychlorinated Biphenyls in Utero, N. Engl. J. Med., 1996, 335:783-789, 12 septembre 1996
  79. N Ribas-Fito, M Sala, M Kogevinas et J Sunyer, Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review, J. Epidemiol. Community Health, 1er août 2001, 55(8) : 537 - 546.
  80. K. A. Gray, M. A. Klebanoff, J. W. Brock, H. Zhou, R. Darden, L. Needham et M. P. Longnecker, In Utero Exposure to Background Levels of Polychlorinated Biphenyls and Cognitive Functioning among School-age Children, Am. J. Epidemiol., 1er juillet 2005, 162(1) : 17 - 26. K. A. Gray, M. A. Klebanoff, J. W. Brock, H. Zhou, R. Darden, L. Needham et M. P. Longnecker, In Utero Exposure to Background Levels of Polychlorinated Biphenyls and Cognitive Functioning among School-age Children, Am. J. Epidemiol., 1er juillet 2005, 162(1) : 17 - 26.
  81. Jacobson JL, Jacobson SW, 2003, Prenatal exposure to polychlorinated biphenyls and attention at school age, J. Pediatr. 143 : 780–788.
  82. Jacobson SW, Fein GG, Jacobson JL, Schwartz PM, Dowler JK. The effect of intrauterine PCB exposure on visual recognition memory. Child Dev 1985;56:853-860
  83. Levin ED, Schantz SL, Bowman RE. Delayed spatial alternation deficits resulting from perinatal PCB exposure in monkeys, Arch. Toxicol. 1988, 62:267-273
  84. Rogan WJ, Gladen BC, McKinney JD et al., Neonatal effects of transplacental exposure to PCBs and DDE, J. Pediatr. 1986 ; 109:335-341
  85. (en) Maryse F, Bouchard, University of Montreal, Canada, Oulhote, Youssef, Universite de Montreal, Canada; Sagiv, Sharon, Boston University School of Public Health, Canada; Dave, Saint-Amour, Department of Psychology, Université du Québec à Montréal, Canada; Jennifer, Weuve, Rush University Institute for Healthy Aging, Rush University, United States, « Exposure to Polychlorinated Biphenyls and Cognition in Older U.S. Adults: National Health and Nutrition Examination Survey (1999-2002) »
  86. Lind PM, van Bavel B, Salihovic S, Lind L, 2011 Circulating Levels of Persistent Organic Pollutants (POPs) and Carotid Atherosclerosis in the Elderly. Environ Health Perspect doi:10.1289/ehp.1103563
  87. M. Vrijheid, D. Martinez, I. Aguilera, F. Ballester, M. Basterrechea, A. Esplugues, M. Guxens, M. Larranaga, A. Lertxundi, M. Mendez et al., Socioeconomic status and exposure to multiple environmental pollutants during pregnancy: evidence for environmental inequity?, J. Epidemiol. Community Health, 25 octobre 2010, jech.2010.117408v1.
  88. wain WR, An overview of the scientific basis for concern with polychlorinated biphenyls in the Great Lakes, In D'Itri FM, Kamrin MA, éds., PCBs: human and environmental hazards, Boston, Butterworth, 1983:11-48.
  89. Tanabe S., PCB problems in the future: foresight from current knowledge, Environ. Pollut., 1988 ; 50:5-28
  90. Gladen B., Longnecker M., Schecter A., Correlations among polychlorinated biphenyls, dioxins and furans in humans, American Journal of Industrial Medicine, 1999, 35, p. 15-20.
  91. Fiche INRS
  92. voir fiche INRS citée ci-dessus
  93. page du ministère de l'Écologie, sur les PCB, créée le 19 septembre 2007)
  94. Le décret no 87-59 du 2 février 1987 relatif à la mise sur le marché, à l'utilisation et à l'élimination des polychlorobiphényles et polychloroterphényles (JO du 4 février 1987)
  95. Décret no 2001-63 du 18 janvier 2001 modifiant le décret no 87-59 du 2 février 1987 relatif à la mise sur le marché, à l'utilisation et à l'élimination des polychlorobiphényles et polychloroterphényles, J.O. no 21 du 25 janvier 2001, p. 1286
  96. (doc. annexé au Plan de gestion de l'anguille, 2008)
  97. Avis AFSSA du 5 février 2008
  98. Circulaire du 7 juillet 2011 relative aux modalités de mise en œuvre par les préfets des mesures de gestion dans le cadre du plan national d'actions sur les polychlorobiphényles (PCB)
  99. Pollution du Rhône : 10 questions sur un désastre écologique majeur
  100. Le Rhône pollué par les PCB : un Tchernobyl français ?
  101. voir par exemple PCB : réaction tardive sur une pollution historique article, Novethic 24 septembre 2007]
  102. Source, CAP 21
  103. Arrêté préfectoral du 2 avril 2008
  104. « Pollution de la Mellier : état de la situation », sur www.wallonie.be, 29 février 2024 (consulté le 2 mars 2024)
  105. Parfois orthographié Ascarelle ou Ascarel
  106. Proceedings of the Subregional Awareness Raising Workshop on Persistent Organic Pollutants (POPs), Bangkok, Thaïlande, United Nations Environment Programme, 25-28 novembre 1997 (consulté le 11 décembre 2007)
  107. Brand names of PCBs — What are PCBs?. Japan Offspring Fund / Center for Marine Environmental Studies (CMES), Ehime University, Japon, 2003 (consulté le 11 février 2008)
  108. http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA403BPC10.pdf