Dans le monde moderne, Grandeur physique a attiré l’attention de millions de personnes à travers le monde. Que ce soit en raison de son impact sur la société, de sa pertinence dans la sphère politique, de son influence sur la culture populaire ou de sa signification dans l'histoire, Grandeur physique est devenu un sujet d'intérêt et de débat constant. De ses origines à son évolution actuelle, Grandeur physique a marqué un avant et un après dans la façon dont nous vivons, pensons et interagissons avec le monde qui nous entoure. Dans cet article, nous explorerons différents aspects de Grandeur physique, de ses origines à son impact sur la vie quotidienne, en cherchant à comprendre sa véritable signification et sa pertinence dans notre société.
On appelle grandeur physique, ou simplement grandeur, toute propriété d'un phénomène physique, d'un corps ou d'une substance, qui peut être mesurée ou calculée, et dont les valeurs possibles s'expriment à l'aide d'un nombre (réel ou complexe) et d'une référence (comme une unité de mesure, une échelle de valeurs ou une échelle ordinale)[1]. La précision de la mesure est indiquée par l'incertitude de mesure.
On parle de grandeur physique algébrique (par référence à la mesure algébrique utilisée en géométrie), ou simplement de grandeur algébrique, dans le cas des nombres réels, c'est-à-dire lorsque la grandeur peut prendre des valeurs négatives. Par exemple le temps et la longueur sont des grandeurs algébriques.
La présence d'une unité de mesure n'est pas nécessaire, au sens strict, pour exprimer une grandeur physique. Ainsi, si la masse et la longueur sont des grandeurs qui s'expriment respectivement en kilogrammes et en mètres (ou en multiples ou sous-multiples de ces unités de base), par contre l'indice de réfraction d'un milieu conducteur de la lumière s'exprime à l'aide d'un nombre sans unité, du fait qu'il est défini comme quotient de deux grandeurs exprimées avec la même unité ; il en est de même pour les lignes trigonométriques usuelles (sinus, cosinus, tangente) d'un angle dans un triangle rectangle. On parle dans ces cas de grandeur sans dimension.
Une grandeur physique est définie par sa mesure, ce qu’elle caractérise et sa fonction. Elle incarne un concept particulier, une abstraction dont le statut est celui d’outil de la pensée au service des réponses que le scientifique apporte à ses questions[2]. Prenons par exemple la masse : nous pouvons mesurer la masse d’un objet à l’aide d’instruments conçus par le Laboratoire national de métrologie et d'essais. Nous obtenons un nombre qui caractérise la quantité de matière de l’objet, quelle qu’en soit la nature : plume, plomb, etc. La grandeur physique « masse » a pour fonction d’intervenir dans les expressions des lois, comme celles des lois du mouvement de Newton.
En statistique, les grandeurs physiques sont considérées comme des variables quantitatives continues.
La possibilité de définir des grandeurs à partir d'autres implique l'existence d'un point de départ, autrement dit de grandeurs de base. Ces grandeurs, ou plutôt leurs unités, sont souvent regroupées en systèmes d'unités en fonction de l'utilité de leurs relations et de leurs combinaisons.
Les grandeurs de base sont également étroitement liées à des domaines particuliers de la physique. Une tentative de classement en fonction de ces domaines est proposée ci-dessous.
Le système actuellement le plus répandu est le Système international qui repose sur sept unités de base. Les grandeurs mentionnées ci-dessous sont décrites dans ce Système international. Pour chaque grandeur est donnée sa dimension au sens de l'analyse dimensionnelle, ainsi que l'unité correspondante du SI et le symbole de celle-ci.
La liste ci-dessous n'est pas exhaustive. L'incorporation de la grandeur « angle » dans les analyses dimensionnelles n'est pas générale. Les deux approches, avec ou sans incorporation, sont indiquées. Pour chaque grandeur on indique son nom suivi, entre parenthèses, de son symbole dimensionnel, de son unité de mesure dans le Système international et, entre crochets, du symbole de cette unité.