Loi d'Irwin-Hall

Dans le monde d'aujourd'hui, Loi d'Irwin-Hall continue d'être un sujet de grand intérêt et de débat parmi les experts et les amateurs. Avec les progrès de la technologie et de la mondialisation, Loi d'Irwin-Hall reste d'actualité dans notre société moderne et continue de provoquer une série d'émotions et d'opinions mitigées. Dans cet article, nous explorerons les différents aspects de Loi d'Irwin-Hall et son impact sur notre vie quotidienne, en examinant tout, depuis ses origines jusqu'à son influence actuelle sur le monde. De plus, nous analyserons les différents points de vue et controverses autour de Loi d'Irwin-Hall, dans le but de fournir une vision complète et équilibrée de ce sujet important.

loi d'Irwin-Hall
Image illustrative de l’article Loi d'Irwin-Hall
Densité de probabilité

Image illustrative de l’article Loi d'Irwin-Hall
Fonction de répartition

Paramètres
Support
Densité de probabilité
Fonction de répartition
Espérance
Médiane
Mode
Variance
Asymétrie 0
Kurtosis normalisé
Fonction génératrice des moments
Fonction caractéristique

En théorie des probabilités et en statistique, la loi d'Irwin-Hall, dénommée d'après le statisticien Joseph Oscar Irwin et le mathématicien Philip Hall, est une loi de probabilité définie comme la somme de variables aléatoires indépendantes de loi uniforme continue[1] sur .

Pour générer des nombres pseudo-aléatoires ayant une loi approximativement normale, on peut générer, par simplicité, des sommes de nombres pseudo-aléatoires de loi uniforme continue.

Il ne faut pas confondre cette loi avec la loi de Bates qui est la moyenne de variables aléatoires uniformes sur .

Définition

La loi d'Irwin–Hall est la loi de probabilité continue pour la somme de n variables aléatoires iid de loi uniforme continue sur  :

Sa densité de probabilité est donnée par :

sgn est la fonction signe :

ou encore par[2] :

H est la fonction de Heaviside :


Ainsi, la densité est une spline (fonction définie par morceaux par des polynômes) de degré n sur les nœuds 0, 1, ..., n. Plus précisément, pour x ∈ ]k, k+1[, la densité est

où les coefficients aj(k,n) sont obtenus par la relation de récurrence en k :

Premières valeurs

  • Pour n = 3,
  • Pour n = 4,
  • Pour n = 5,

Propriétés

  • La probabilité que X soit compris entre k et k+1 est égal à , où est un nombre eulérien[2].
  • La loi de la partie fractionnaire de X est une loi uniforme sur .

Notes et références

  1. (en) N. Balakrishnan, N.L. Jonhson et S. Kotz, Continuous Univariate Distributions, vol. 2, Wiley, , 2e éd. (ISBN 0-471-58494-0), section 26.9
  2. a et b (en) I. A. Salama et L. L. Kupper, « A Geometric Interpretation for the Eulerian Numbers », Amer. Math. Monthly, vol. 93, no 1,‎ , p. 51-52

Voir aussi

Bibliographie

  • Irwin, J.O. (1927) "On the Frequency Distribution of the Means of Samples from a Population Having any Law of Frequency with Finite Moments, with Special Reference to Pearson's Type II". Biometrika, Vol. 19, No. 3/4., p. 225–239. DOI 10.1093/biomet/19.3-4.225 JSTOR:2331960
  • Hall, Philip. (1927) "The Distribution of Means for Samples of Size N Drawn from a Population in which the Variate Takes Values Between 0 and 1, All Such Values Being Equally Probable". Biometrika, Vol. 19, No. 3/4., p. 240–245. DOI 10.1093/biomet/19.3-4.240 JSTOR:2331961