Dans cet article, nous explorerons en profondeur le sujet de Loi de von Mises, en analysant ses origines, son évolution, son impact et ses possibles perspectives d'avenir. Loi de von Mises a fait l'objet d'intérêt et de débats tout au long de l'histoire, influençant divers aspects de la société, de la culture et de la politique. Au fil des prochaines sections, nous approfondirons son sens, ses implications et sa pertinence dans le contexte actuel, mettant en lumière les différentes facettes qui composent ce phénomène. De plus, nous examinerons différentes approches et opinions pour offrir une vue complète et équilibrée, offrant au lecteur une compréhension plus large et plus approfondie de Loi de von Mises.
Dans la théorie des probabilités et en statistiques, la loi (distribution) de von Mises (appelée également distribution normale circulaire ou distribution de Tikhonov) est une densité de probabilité continue, nommée d'après Richard von Mises. Elle donne une bonne approximation de la loi normale périodique(en), qui est l'analogue circulaire de la loi normale. Un angle de diffusion parcourant un cercle est une variable aléatoire suivant la loi normale périodique avec une variance non périodique qui croît linéairement en temps. D'un autre côté, la loi de von Mises est la distribution stationnaire d'un processus de diffusion et déviation sur le cercle dans un potentiel harmonique, i.e. avec une orientation guidée[1].
La fonction de répartition n'est pas analytique et est généralement calculée comme intégrale de la série donnée précédemment. L'intégrale indéfinie de la densité de probabilités est :
Moments
Les moments de la loi de von Mises sont habituellement calculés comme les moments de z = eix plutôt que de l'angle x. On appelle ces moments « moments circulaires ». La variance calculée à partir de ces moments est également appelée « variance circulaire ». Toutefois, on désigne par la « moyenne » l'argument de la moyenne circulaire, et non la moyenne circulaire elle-même.
Le moment d'ordre n de z est :
où l'intégrale se fait sur tout intervalle Γ de longueur 2π. En calculant cette intégrale, on utilise le fait que zn = cos(nx) + i sin(nx) et l'identité de Bessel[4] :
La moyenne de z est alors donnée par
et la valeur « moyenne » de x est ainsi l'argument μ. Il s'agit donc de la direction moyenne de variables aléatoires angulaires. La variance de z, ou variance circulaire de x est :
Entropie
L'entropie de la loi de von Mises est donnée par[2] :
où Γ est un intervalle de longueur 2π. Le logarithme de la densité de la loi de von Mises est directement donné par :
La fonction caractéristique de la loi est donc :
avec . Les calculs donnent alors :
On retrouve, pour κ = 0, que la loi de von Mises est la loi uniforme circulaire(en) et l'entropie devient maximale et vaut ln(2π).
(en) Mardia, « Algorithm AS 86: The von Mises Distribution Function », Applied Statistics, vol. 24, 1975, p. 268-272
(en) Hill, « Algorithm 518, Incomplete Bessel Function I0: The von Mises Distribution », ACM Transactions on Mathematical Software, vol. 3, n° 3, september 1977, p. 279-284
(en) D. Best et N. Fisher, « Efficient simulation of the von Mises distribution », Applied Statistics, vol. 28, 1979, p. 152-157
(en) M. Evans, N. Hastings et B. Peacock, « von Mises Distribution », ch. 41 in Statistical Distributions, 3e éd., New York, Wiley, 2000
(en) Nicholas I. Fisher, Statistical Analysis of Circular Data, New York, Cambridge, 1993
(en) M. Evans, N. Hastings et B. Peacock, Statistical Distributions, 2e éd., John Wiley and Sons, 1993 (ISBN0-471-55951-2), chap. 39
(en) Graham Borradaile, Statistics of Earth Science Data : their distribution in time, space, and orientation, Berlin, Springer, , 351 p. (ISBN978-3-540-43603-4, lire en ligne)