De nos jours, Nombre étoilé est un sujet qui a acquis une grande importance dans la société actuelle. Avec l'évolution constante de la technologie et l'accès illimité à l'information, Nombre étoilé est devenu un point focal de débats, de discussions et d'analyses dans tous les domaines. Que ce soit dans le domaine politique, économique, social ou culturel, Nombre étoilé est présent dans notre quotidien d'une manière ou d'une autre. C’est un sujet qui suscite des passions, des opinions diverses et qui fait bouger les foules. Dans cet article, nous explorerons différents aspects liés à Nombre étoilé, en analysant son impact, son évolution et sa pertinence aujourd'hui.
En mathématiques, un nombre étoilé est un nombre figuré polygonal centré comptant des points régulièrement répartis dans un hexagramme, à la façon dont sont réparties les cases du plateau des dames chinoises.
Le n-ième nombre étoilé est obtenu en répartissant les points dans l'hexagone central comme pour le n-ième nombre hexagonal centré (ayant points sur les côtés extérieurs) : , et les 6 triangles extérieurs comme pour le (n – 1)-ième nombre triangulaire ayant points sur ses côtés : . On a donc :
Ce nombre est égal au n-ième nombre dodécagonal centré :.
Les 25 premiers nombres étoilés sont 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1 093, 1 261, 1 441, 1 633, 1 837, 2 053, 2 281, 2 521, 2 773, 3 037, 3 313 et 3 601 (suite A003154 de l'OEIS). Cette suite d'entiers est de période 25 modulo 100 et de période 3 modulo 9.
Il existe une infinité d'indices pour lesquels le n-ième nombre étoilé est triangulaire (suite A003154 de l'OEIS) et une infinité pour lesquels il est carré (suite A054318 de l'OEIS). Dans les deux cas, ce sont les solutions d'une équation diophantienne. Les trois premiers nombres étoilés triangulaires sont E1 = 1 = T1, E7 = 253 = T22 et E91 = 49 141 = T313 et les trois premiers nombres étoilés carrés sont E1 = 12, E5 = 121 = 112 et E45 = 11 881 = 1092.
Les dix plus petits nombres étoilés premiers sont 13, 37, 73, 181, 337, 433, 541, 661, 937 et 1 093 (suite A083577 de l'OEIS).
La notion peut être généralisée à des polygrammes quelconques[1] . Le nombre étoilé associé à un polygramme d'ordre est défini comme le -ième nombre -gonal centré auquel on ajoute copies du ()-ième nombre triangulaire.
On a donc :
Ce nombre est donc égal au -ième nombre 2-gonal centré.